westnetz

Die Zukunft des Verteilnetzes in einer Wasserstoffwelt

ZBT, Duisburg, 04.02.2025

Fortschreibung der nationalen Wasserstoffstrategie

Zielbilder bis 2030:

- Beschleunigter Markthochlauf
- Sicherstellung ausreichender Verfügbarkeit mit einem inländischen Zubau von 10 GW Elektrolyseurleistung; gesonderte Importstrategie
- ➤ Aufbau einer leistungsfähigen H2-Infrastruktur, d. h. Verbindung aller großen Erzeugungs-, Import- und Speicherzentren mit relevanten Verbrauchern
- Etablierung von H2-Anwendungen in allen Sektoren
- Ausbau der Technologieführerschaft
- Verbesserung der Rahmenbedingungen

Säulen des Wasserstoffhochlaufs

Wasserstoffhochlauf

Kernnetzstrategie In Aussicht: Kraftwerkstrategie Importstrategie Speicherstrategie Verteilnetzstrategie

Perspektivisch: H2-Beschleunigungsgesetz Nationale Wasserstoffstrategie

Kraftwerkstrategie:

- Neue Gas-Kraftwerke sollen nur noch übergangsweise mit Erdgas betrieben werden.
- Ab 2035 bis 2040 sollen sie von Erdgas auf grünen Wasserstoff umstellen.
- Neuplanungen: 4x2,5 GW H2-Ready und 500 MW nur H2

Importstrategie:

- Zuverlässige Nachfrage als Signalsetzung
- Förderung der Angebotsseite in der EU und anderen Drittstaaten
- Aufbau der pipelinebasierten Importinfrastruktur
- Praktikable Nachhaltigkeitsstandards und Transparenz über die Eigenschaften des gehandelten Wasserstoffs
- Diverse Lieferquellen

Importstrategie für Wasserstoff und Wasserstoffderivate

Speicherstrategie:

- Vorliegen der Wasserstoffspeicherstrategie bis Ende 2024.
- Festlegung des Bedarfs an Wasserstoffspeichern für den Zeitraum 2030 bis 2035
- Umrüstungspfad von Gasspeichern zu Wasserstoffspeichern.
- 2035: 5-21 TWh; 2045: 64 bis 105 TWh

Wie wird der Wasserstoff transportiert & verteilt?

Wasserstoff-Kernnetz

Kerndaten des Kernnetzes (Genehmigung durch BNA am 22.10.2024):

- ➤ Länge: 9.040 km (Fertigstellung bis 2032)
- 60% Umstellung; 40% Neubau
- Investitionskosten: ca. 19 Milliarden Euro
- Übertragungsleistung: ca. 100 GW

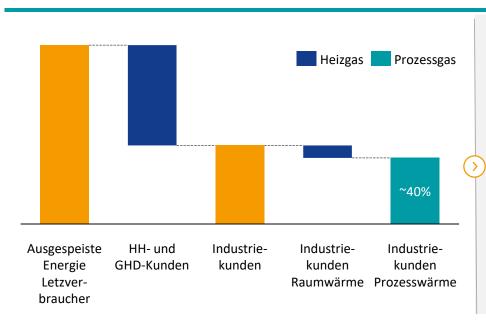
Das Transportnetz steht in den Startlöchern; das Verteilnetz noch lange nicht

Gas-Verteilnetze: Tragsäule der Energiewende

Gasverteilnetze – Backbone der Industrie, des häuslichen Wärmemarktes und zunehmend der Stromerzeugung

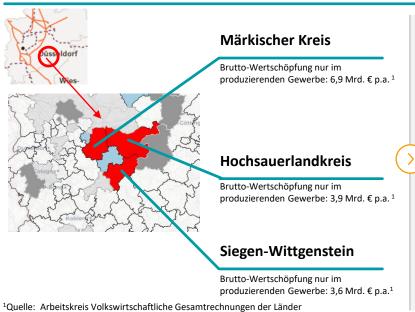
	Transportnetze	Verteilnetze
Industrielle und gewerbliche Letztverbraucher	497	1.772.134
Gaskraftwerke >10MW	48	165
Ausspeisung	183,3 TWh	752,4 TWh (davon 485 TWh in Industrie und Strom)

Quelle: Monitoringbericht der BNetzA (2018)


- Versorgen 50% der deutschen Haushalte mit Wärme
- Hoher Grad an Vermaschung, flächendeckend vorhanden
- Auf- und Ausbau in den letzten 3 Dekaden
- Moderne Technologien und hochwertige Materialien.
- Der deutlich überwiegende Teil der Verbraucher ist an die Verteilnetze angebunden (bis zu 25 bar)

Gasverteilnetze dienen nicht nur der Versorgung mit Heizgas sondern auch zu relevanten Teilen mit Prozessgas

Abnehmerstruktur der ausgespeisten Energie am Beispiel der Westnetz



- Die Prozessgaskunden im Verteilnetz der Westnetz weisen eine heterogene Branchenstruktur aus.
- Die industriellen Prozessgaskunden sind weit überwiegend im innerörtlichen Verteilnetz angeschlossen.
- Durch die Substitution von Kohle zur Erzeugung von Prozesswärme kann der Anteil von Prozessgas im Verteilnetz weiter steigen.
- Ein tief verzweigtes Gasverteilnetze insbesondere in wirtschaftlichen Ballungszentren ist ein zentraler Standortfaktor.

Industrieller Mittelstand in ländlichen Regionen ist von der Versorgung mit Prozessgas abhängig

Beispiel für Regionen mit hohem Prozessgasanteil

Regionale Verteilung der Prozesswärmekunden zeigt:

- Prozessgas wird nicht nur in den industriellen Ballungszentren entlang der Ruhr und der Rheinschiene benötigt
- Insbesondere der industrielle Mittelstand in ländlichen Regionen ist auf eine Versorgung mit molekülbasierter Prozesswärme angewiesen

Diese Regionen werden nicht durch das Kernnetz versorgt. Verteilnetze sind Voraussetzung für Versorgung.

Vielen Dank für Ihre Aufmerksamkeit!

noch Fragen?

Carsten Stabenau

M: +49 162 2542137

E: carsten.stabenau@westnetz.de